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A new numerical scheme is proposed for the generation of an 
orthogonal coordinate grid in an arbitrary simply connected two-  
dimensional domain. The scheme is robust and non-iterative and is 
based on the conjunction of the familiar boundary integral technique 
with the covariant Laplace equation method for mapping. In the 
proposed scheme, two types of problems are considered: (1) Boundary 
correspondence is specified on two adjacent sides of the boundary, 
or (2) The distortion factor is specified in the product form f ( ( ,  r/) = 
f'](~') O(f]). ~) 1992 Academic Press, Inc. 

1. INTRODUCTION 

The generation of boundary-fitted orthogonal coor- 
dinates for a given 2D domain is a long-standing problem 
of theoretical and practical importance. Indeed, many 
methods have been proposed and many of these are 
reviewed in the book by Thompson et al. [1]. 

In general, there are four generic properties that would 
characterize an ideal mapping scheme: 

(i) The availability of an existence proof for the 
solution of the problem posed by the given method JR1 ]. 

(ii) Adjustability of the grid spacing [R2]. 

(iii) Direct construction of the corresponding grid 
system in the physical domain for a given standard grid 
form (e.g., rectangular or square) in the computational 
domain [R3]. 

(iv) Robustness and simplicity of the solution 
method I-R4]. 

So far, existence proofs have only been obtained for con- 
formal mapping and its simple variations, more precisely, 
for a conformal mapping followed by independent nonlinear 
coordinate stretching in two coordinate directions. There- 
fore, the most obvious candidate for orthogonal grid 
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generation methods is conformal mapping. Indeed, efficient 
methods for numerical construction of conformal mappings 
have been developed (see Fornberg [2] and references 
therein). Among them, the method of Symm [3] is note- 
worthy. He formulated the problem of conformal mapping 
from the 2D domain to the unit disk as an integral equation, 
which was then solved numerically. His scheme is powerful 
and accurate, but it has two significant deficiencies. One is 
the nonadjustability of the grid spacing [R2], which is 
intrinsic to conformal mapping. A second deficiency is that 
his method generates the image point in the computational 
domain for a given point in the physical domain instead of 
vice versa as desired JR3 ]. Later Menikoff and Zemach [-4] 
again used an integral formulation, but they employed a 
Newton-Raphson iteration to satisfy the third requirement 
[R3] (i.e., to solve the direct mapping problem instead of 
the inverse problem). 

Generally speaking, however, a more efficient approach 
to the direct problem is to solve the pde's for the physical 
space coordinate variables, rather than inverting an integral 
equation. One mapping scheme based upon this latter 
approach is due to Mobley and Stewart [-5 ], which satisfies 
the requirements 1 and 3 ([R1] and [R3]) and is also 
reasonably flexible with regard to the requirement 2 ( I-R2] ). 
Mobley and Stewart derived a set of pde's for the physical 
space coordinate variables in terms of computational 
domain coordinates that allow nonlinear stretching of 
coordinates from conformal coordinates. However, their 
formulation requires that boundary data be adjusted to 
correspond to a specified distortion factor, f(~, t/) (or vice 
versa), and this requires iterative solution of the mapping 
problem. Later, Ryskin and Leal [6] generalized Mobley 
and Stewart's idea by proposing the covariant Laplace equa- 
tion method. Their scheme is ideal for the requirements 
FR2] and [R3] because the covariant Laplace equations 
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are for the physical space variables in terms of computa- 
tional domain coordinates and the grid spacing can be 
adjusted by choice of their distortion factor, f ( ( ,  t/). They 
proposed basically two different variations of the basic 
mapping technique, a strong constraint method that was 
designed primarily for free-boundary problems in which 
f(~, ~/) is specified a priori, but no direct control is exerted 
on the placement of coordinate points along the boundaries, 
and a weak constraint method that was designed for 
mapping of a given fixed domain. It is the latter method that 
is relevant to the present discussion of mapping for a 
fixed domain. In the weak constraint method, the position 
of coordinate lines (i.e., the boundary correspondence) is 
specified on boundaries but the distortion factor, f(~, t/), is 
adjusted in the course of solution to achieve orthogonality. 
However, for this case of specified boundary corre- 
spondence on all boundaries, an existence proof for the 
mapping problem is not available (JR1 ] ). Furthermore, the 
mapping problem in the weak constraint method is strongly 
nonlinear, and the solution method must be iterative, which 
is a disadvantage ([-R4]). 

In the present paper, we present a new direct and non- 
iterative scheme based on Ryskin and Leal's covariant 
Laplace equation method, which satisfies all four basic 
requirements. As mentioned earlier, an existence proof is 
only available for limited variations of conformal mapping. 
Therefore, we restrict the grid adjustability in the present 
scheme to independent nonlinear stretching of conformal 
coordinates (in this case, the governing equations are basi- 
cally the same as those of Mobley and Stewart). Because of 
the resulting restriction on the adjustability of the grid 
spacing, we limit our considerations to only two types of 
problems: 

(i) The boundary correspondence between points in 
the mapped and physical domains is specified arbitrarily on 
two adjacent sides of the boundary. 

(ii) The distortion factorf(~, t/) is specified in the form 
f(~, q) = H(~) O(r/). 

In each case, the specified data is enough for a boundary of 
specified shape to determine a coordinate map from a com- 
putational domain (4, t/) to the physical domain. However, 
as part of the mapping problem in case (i), we need to deter- 
mine the specific form for the distortion function that is 
consistent with the specified boundary correspondence, as 
well as the boundary correspondence on the other two 
boundaries, while in case (ii) we need to determine the 
correspondence between boundary points in the mapped 
and physical domains that is consistent with the specified 
f ( ( ,  r/). In both cases, if we attempt to solve the mapping 
problem directly, this unknown data forf(~, t/) and/or the 
correspondence between mapped and physical boundary 
points leads to an iterative solution. In fact, Mobley and 

Stewart considered problems of the second type, and their 
solution technique was iterative. 

The essence of the present mapping method is that we 
avoid an iterative scheme by introducing a preliminary step. 
This preliminary step corresponds to a conformal map and 
is based on the boundary integral technique (same idea as 
Symm [3], but in our case based on the Green's formula). 
As we shall see, the preliminary step allows us to determine 
all undetermined "parameters" of the map, i.e., the distor- 
tion function f(~, r/) (if not specified) and Dirichlet-type 
boundary conditions on all boundaries (i.e., the values 
taken by boundary points in the mapped domain when 
transformed to the physical domain). With f(~, t/) and the 
boundary correspondence specified from this initial step, 
the remaining mapping problem is linear, and we can 
employ a noniterative, direct scheme for its solution. 

In the final section, we consider mapping problems that 
are intrinsically nonlinear. An example is the weak 
constraint method of Ryskin and Leal [-6] for cases in 
which the boundary correspondence between the mapped 
and physical domains is specified on all boundaries. 
Although the preliminary conformal mapping step cannot 
produce a linear mapping problem, we suggest that it can 
still lead to a significant simplification. 

2. GENERATING EQUATIONS FOR 
THE MAPPING 

An important first step in the development of a mapping 
between a Cartesian and a boundary-fitted curvilinear coor- 
dinate system is to determine the equations to be satisfied by 
the transform functions x(~, q) and y(~, q) (see Fig. 1). For 
an orthogonal curvilinear coordinate system, these equa- 
tions are the two covariant Laplace equations (Ryskin and 
Leal [6] ) 

O~ f ~  +~'~ \~r~--@ : 0 '  (la) 

t~ f~-~ +~-'~\f~r/J =0 '  (lb) 

~=0 < 

x : x ~ q )  
n 

y : yt~n) 

x 

q* 

1 

FIG. 1. Orthogonal mapping from a rectangular domain to an 
arbitrary simply connected 2D domain. 
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wheref  = h,/h~, and h e and h~ are defined as 

h~ = , j ( a x / a O  2 + (aylaO 2, 

h.  = x / ( a x l a . )  2 + (ay/a~) 2. 

In the mapping technique that is described below, this 
system of equations with appropriate boundary conditions 
is used to determine the coordinate mapping. As we can see 
from the definitions off ,  he, and h,, the system of Eqs. (1) 
is highly nonlinear, and consequently the properties of the 
system of equations, such as the existence and uniqueness of 
solutions, are not known except for some very special cases. 
In fact, the system (1) with boundary conditions is usually 
indeterminate in the sense that the solution is not unique. 
Since the notion of the indeterminacy of the system (1) 
is extremely important, we present an example in the 
following subsection to make the idea more concrete. 

2.1. Indeterminacy of the System (1) 

Here we present an example to show that the system (1) 
with the boundary correspondence (i.e., Dirichlet condi- 
tions for x(~, 7) and y(~, ~/)) and the orthogonality specified 
at the boundaries is not determinate, in general. As a 
simplest case, let us consider the problem of generating an 
orthogonal coordinate system in a unit square domain as 
shown in Fig. 2. One trivial "solution" of the mapping 
problem is the simple Cartesian coordinate system, 
x = x(~, 7) = ~ and y = y(~, ~/)= ~/. The question is whether 

y '  

I I n 
I_ x = x¢.~) 

t y = yt~n) 

. . . . .  _~_ • 

yJ 

X 1 

y = y(~rl) = rl 

x 

FIG. 2. Two different solutions of the system (1) which have the 
exactly same boundary correspondence and satisfy the orthogonality 
condition at the boundary. 

any other orthogonal mapping exists which preserves the 
same boundary correspondences as the Cartesian coor- 
dinate system. To answer this question, let us begin by 
introducing a function O(x, y) = x + V(x, y) in which Vis an 
arbitrary smooth function that satisfies the following 
conditions: 

( i)  
denotes 

(ii) 
v(0.5 + 

One 

V = Vn = 0 at the boundaries, where the subscript n 
differentiation in the outward normal direction. 

V is antisymmetric with respect to x=0.5 ,  i.e., 
6, y ) =  - V ( O . 5 - 6 ,  y) forO<6<0.5.  

example for V is 

V(x, y) -- - e(x - 0.5) x2(x - 1 )2 y2(y _ 1 )2, 

0 < ~ , ~  1. 

Now let the level curve for ¢ starting from (4, 0) be the coor- 
dinate line ~ = const. Then, the orthogonal q-coordinate is 
the steepest descent curve starting from (1, it) and ending at 
(0, t/) because of symmetry. Obviously for all 0 < e ~ 1, the 
level curves and the steepest descent curves are orthogonal 
at any point including the boundary points. Furthermore, 
they have the same boundary correspondences as the 
Cartesian coordinate system. Since we obtain a different 
solution set of (1) for each arbitrary ~, the system (1) clearly 
has infinitely many solutions for this specific mapping 
problem; i.e., the problem is not determinate. 

Although we have not illustrated the indeterminacy 
property for more general cases, it is true for the general 
class of 2D domains. The most important implication is 
that we need more constraint(s) to make the problem deter- 
minate (i.e., the Laplace equations (1) with the boundary 
correspondence and orthogonality specified at all 
boundaries does not have a unique solution so long as 
f(~, t/) remains arbitrary). 

2.2. Linear Problems of the System (1) 

As suggested above, the mapping problem derived from 
Eq. (1) only becomes determinate if additional constraints 
are imposed. For example, if the distortion functionf(~, t/) 
is specified, then the mapping equations (la) and (lb) are 
linear and the mapping problem is determinate. However, 
this is somewhat misleading because it is not possible to 
arbitrarily specify both f(~, tl) and the correspondence of 
boundary points. A given distortion function is consistent 
only with a particular set of boundary correspondences. 
Hence, iff(~, t/) is completely specified, then the consistent 
set of boundary correspondences must be obtained as part 
of the solution of the problem and cannot be specified 
arbitrarily. 

In the present paper, we consider the special case of 
mappings, where f is assumed to exist in the product form 
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k V ~  . . . . . .  

, x=x<u,v) v - l ! ! ! ! !  ! 
i i i i i i • 

U = U ~  
y=y<u,v) t l i i i i i  

I l i l l l i <  

x 1 

rl* 

J 

x = x(~n) 

y = y(~,q) 

FIG. 3. Decomposition of orthogonal mapping into conformal 
mapping and nonlinear stretching of conformal coordinate. 

f(~, t/)= H(~)O(t/). For this class of maps, existence and 
uniqueness can be shown without difficulty when f is 
completely specified. In fact, this class of maps is just a 
composite consisting of a conformal map followed by inde- 
pendent nonlinear stretchings (or contractions) in the ~- 
and q-directions as shown in Fig. 3. In this case, the distor- 
tion function is given by 

f _  hA . h~ v'(q) f~o. v'(q____~) 
h~ h. u'(~) u'(~) 

where h, and h v are given as 

h .  = x / ( a x / a u )  2 + (ay/au)  2, 

ho = x / ( a x / a v )  ~ + (&/&)2, 

and icon denotes the distortion factor of the conformal 
mapping. Since the distortion factor for any conformal 
mapping iSfco, = 1, we have 

v ' ( , 0  1 
f = = • v ' (q)  = H ( ~ )  O(q) .  (2) . ' ( ~ )  u'(~) 

solution scheme this means that we would have to iterate on 
the boundary conditions for Eq. (1). For case (2), we must 
determine f(~, q) (as well as the boundary correspondence 
on the opposite boundaries), and again, an iterative 
solution would seem necessary. 

Here, however, we are interested in a non-iterative 
scheme. As mentioned earlier, the essence of our mapping 
method is that we avoid iteration by introducing a 
preliminary step. This preliminary step corresponds to a 
conformal map and is based on the boundary integral 
technique. As will be shown in Section 3, the preliminary 
step allows us to determine all undetermined parameters of 
the map, i.e., the distortion function f(~,tt) and the 
consistent Dirichlet type boundary conditions on all 
boundaries. Once f(~, q) and/or boundary correspondences 
are determined from the initial step, the remaining 
mapping problem (Eq. (1)) is linear and can be solved non- 
iteratively. 

2.3. Conformai mapping 

As indicated above, our grid generation scheme is based 
on the use of conformal mapping as a preliminary step. 
Thus, in the present subsection, we briefly review a few 
known facts about conformal mapping. The celebrated 
Riemann mapping theorem guarantees the existence of a 
conformal map between any two decent simply connected 
domains. However, it is extremely important to note that 
the Riemann mapping theorem applies only to the open 
sets, i.e., the domains inside the boundaries, not to the 
closed sets. The implication is that conformality of the 
boundary points is neither guaranteed nor required in 
the theorem. In fact, conformality of the boundary points 
can be obtained only if the boundaries in the mapped and 
physical domains are conformal. 

Now let us discuss the conformal mapping between a 
given physical domain and a rectangular domain with 
Cartesian coordinates. Such a conformal mapping can 
always be achieved by solving for two conjugate harmonic 
functions of the map in the domain g2 as shown in Fig. 4, i.e., 

For this general class of maps, we will be concerned with the 
two distinct cases: 

(1) The distortion factor f is specified in the form with 
f = H ( ~ )  O(q) without any specification of the boundary 
correspondences. 

(2) The boundary correspondences are specified for two 
adjacent (i.e., not opposite) sides of the boundary, but 
without specification o f f  except for the assumption that it 
exists in product form. 

In either case, if we try to solve the mapping problem 
directly, we must use an iterative method. In case (1), we and 
must determine the particular boundary correspondence 
that is consistent with the specified form for f, and in a direct 

V2u = 0 in O (3a) 

(it Ou 0 

o n  

' ~ 1 \  

~ 2  / 

~ 3 J  

,~Q4/ 

V2v = 0 in f~ (3b) 
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~4 

t* ~ =  

~u =0 v=O 
bn 

FIG. 4. Two conjugate harmonic functions for conformal mapping. 

with 

o n  1 0 ~'~ 2 
~0ff23 

\ 0 1 2  4 

In Fig. 4, n is the outgoing normal vector and t is the 
tangential vector along the boundary (positive in the 
counterclockwise direction). As we can see in Fig. 4, at all 
boundary points except for some corner points, the condi- 
tions 3u/On = 0 or OrlOn = 0 ensure orthogonality. In Fig. 4, 
it should be noted that the value v* for the v-problem is not 
free but is determined from the Cauchy-Riemann condition 
on 0121, 

Ov 0u 

0t - 0n" 

In particular, 

fj'<) v * = -  0 ~nn dt. (4) 

As we can see in (3), the governing equations for the 
conformal map are linear and it is quite easy to show that 
the solution for each problem is unique. 

So far, in the present section, we have discussed the 
possibility of a non-iterative grid generation scheme starting 
from some general properties of the mapping equations 
(Eq. (1)). In the following section, the overall grid genera- 
tion method will be discussed in detail. 

3. METHOD OF GRID GENERATION 

3.1. Step I: Preliminary Step 

As suggested by the sketch in Fig. 3, the grid system 
for f = / / ( 4 )  O(t/) is basically the same as for conformal 
mapping, except for the density of the grid distribution; i.e., 
the coordinate lines for f =  H(¢)O(t/) coincide with the 
coordinate lines of the conformal mapping, but the corre- 
sponding ~ or ti values are different from the u and v values 
of the conformal map. Therefore the first step of our grid 
generation method is to determine the boundary corre- 
spondence between the physical domain and the inter- 
mediate (u, v)-domain. In this first step, we do not have to 
solve the whole problem defined in (3). Instead, we need 
only to determinee u = (u, v) values for the boundary points 
because we are interested only in the boundary corre- 
spondence at this step. For this purpose, it is natural and 
convenient to use a boundary integral (BI) technique for 
the solution of (3). The detailed implementation will be 
discussed in Section 4. The computed (u, v) values for the 
boundary can be represented as functions of the arc length 
along the physical boundary, i.e., 

Ub = ub(t), Vb = vb(t), (5) 

where the subscript b is for the boundary. Since we use a 
finite number of nodes for the boundary integral technique, 
we can use cubic spline fittings with the appropriate end 
point conditions (usually u~(t) = 0) to interpolate to specific 
values of t. These spline functions will then be used to deter- 
mine u and v values corresponding to given points on the 
physical boundary. Inversely, we can develop functional 
relationships for (x, y) in terms of (ub, Vb), i.e., 

x = x(ub, G), y = y(ub, G), (6) 

which can be used to determine (x,y) on the physical 
boundary for a given point (Ub, G)  on the boundary in the 
mapped domain. 

Now, we determine the Dirichlet-type boundary condi- 
tions for the covariant Laplace equations ((la) and (lb)). 
In particular, we determine the correspondence between 
boundary points in the (¢, t/)-domain and the values of 
(x, y) of boundary points in the physical domain. As men- 
tioned earlier, we are concerned with two distinct problems, 
and the details of this step are a bit different, depending on 
the specific case. Therefore, we separately discuss each type 
of problem. 

3.1. The ease of  specified f =  H(~) O(q) 

From (3) we have 

1 
v'(n) =//(4) o(n). (7) u'(~) 
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Now, since the right hand side of (7) is given, we can 
decompose (7) into two equations as 

1 
= CH(4), for 0 -..< 4 -..< 1, u'(4) 

1 
v'(t/) = ~ O(q), for 0~< q ~< t/*, 

where, the unknown constant C is determined from the 
condition u(1)=  1 (see Fig. 4). Therefore, we have 

~ ds /f, l ds 
u(4) = fo H(s)/ o H(s) 

for 0~<~<1 (8a) 

the intermediate domain. Thus, each (4, t/) pair that has 
been associated with a boundary point in the physical 
domain is now associated with a point (u, v). 

(s2) On the opposite boundaries where the boundary 
correspondence is not initially specified, the coordinate 
boundary points should have the same (u, v) values as 
obtained from (1) for the specified boundaries. The corre- 
sponding positions of the points on the opposite boundaries 
in the physical (x, y) domain are now obtained by using 
Eq. (6). These points also have the same (4, t/)values as the 
boundary points for which the boundary correspondence 
was originally specified. 

(s3) Now, we know u(~) and v(t/) on all boundaries, 
hence we can calculate u'(~) and v'(t/). 

Then, for a map of the assumed form, we can calculate 

and 

fl v(q) = O(s) ds g ( s )  

for 0 <~tl <~ tt*. (8b) 

In (8b), tlae unknown upper bound of integration r/* is 
chosen so that v(t/*) = v*. Equations (Sa) and (8b) allow us 
to transform from specific boundary values in the (4, 1/) 
plane to corresponding values of u and v in the intermediate 
conformal mapping domain. Normally, the desired values 
for 4 and r/would be chosen, as indicated in Fig. 3, by split- 
ting the intervals (0~< 4 ~< 1, 0 ~<t/~<q*) into even parts so 
that coordinate lines in (4, q) correspond to a rectangular 
(Cartesian) grid. 

Once (Ub, Vb) values are known, corresponding to the 
desired pattern of coordinate lines in (~, t/), the corre- 
sponding boundary values for (x,y) in the physical 
domain are obtained via the inverted form (Eq. (6)) of the 
boundary-integral results for the conformal map. Thus, with 
f(4,  t/) specified, and boundary values for the functions 
x(~, q) and y(~, r/) specified (i.e., x =X(Ub(4), Vb(~))), the 
mapping problem is now reduced to the linear problem of 
solving (1) subject to Dirichlet boundary conditions. 

3.1.b. The Case of Specified Boundary Correspondence for 
Two Adjacent Sides of the Boundary 

When the boundary correspondence is specified, we mean 
that specific (4, t/) values are assigned to specific points 
(x, y) on the boundaries of the physical domain. For the 
case in which the boundary correspondence is given on two 
adjacent boundaries, we follow the following steps: 

(sl) Solve the BI conformal mapping problem. Then, 
we know from Eq. (5) that a point at a distance t around the 
physical boundary corresponds to a certain point (u, v) in 

v'(~) 
f(4,  r/) = # ( 4 )  (9) 

Hence, we have obtained all necessary informations, namely 
f(4,  t/) and the previously unspecified boundary corre- 
spondence on the opposite boundaries, so that the mapping 
problem now involves the linear equations (Eq. (1)) w i t h f  
given, which are to be solved subject to Dirichlet boundary 
conditions on all boundaries. 

3.2. Step 2: Solving the Covariant 
Laplace Equations 

From the previous step, we have determined all informa- 
tions needed to obtain a unique solution of the covariant 
Laplace equations (Eqs. ( la)  and (lb)). Since the equations 
with specified f(4,  r/) are linear and the boundary conditions 
are of the Dirichlet type, it is simple to solve the mapping 
problem by a direct method. In the next section, we present 
the details of the boundary integral formulation for the first 
step in the mapping scheme. 

4. BOUNDARY INTEGRAL FORMULATION OF 
THE CONFORMAL MAPPING PROBLEM 

As mentioned in the previous section, there is one 
parameter of the conformal map that must be determined as 
part of the solution, namely v*. Thus, we begin by solving 
the u-problem first in order to determine v* by Eq. (4). Since 
the two problems for u and v are identical except for 
the boundary conditions, we limit our discussion to the 
u-problem only. The objective, as with other applications of 
the BI method, is to use the appropriate form of Green's for- 
mula and fundamental solutions of the governing equation 
to transform the problem (Eq. (3a)) to an integral formula 
which specifically gives the data that is unknown on each 
segment of the boundary in terms of the data that has been 
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~ = o ~  ~ = J - - / ~  ~ - o  
On / Cu=O n \ ~ -  

r X 

t , o  

u=O 

(a) 

( 4 ) ~  (3)~~(2) 

(1) 

(b) 

FIG. 5. An illustration for the BI method: (a) notations for integral 
equation; (b) discretization along the boundary. 

specified. For example, the values of u are unknown on 
segments 2 and 4, while Ou/On are unknown on segments 1 
and 3. 

Let us consider an arbitrary simply connected 2D domain 
as shown in Fig. 5. Green's formula for a harmonic function 
in the 2D domain is given by 

Alternatively, using the relation 

dc~ du 

we have 

~ ~ dt + fea -~n log r dt = O. (12) 

Now, if we define w = Ou/On, and represent u and w using a 
finite number of nodal values, then (12) can be represented 
by the following vector equation: 

Au = Gw.  (13)  

Here A = (A 1, A 2, A 3, A4), G = (G 1, G 2, G 3, G4), u = (ill, 
u2, i3, u4) T, and w = (w I , w2, w3, ~4) T, where the subscripts 
and the superscripts denote the boundary label (i.e., sides 
1-4 in the transform domain), and the tilde is used to 
indicate the known variables on the particular boundary 
segment (i.e., u is specified on sides 1 and 3, while w is 
specified on sides 2 and 4). By rearranging (13) we have 

Mx =N~,  (14) 

/3u(x)= a G ( x - x ° )  ~nn dt 

(10) 

where M = ( - G 1 ,  A 2, - G 3 ,  A4), N = ( - A  l, G 2, - A 3 ,  

G4), x = (wl, U2, W3, U4) T, and ~, = (wl, u2, w3, i4) T. In (14), 
the right hand side is known, so the solution is given by 

x =  M-I(N~) .  (15) 

where/3 = 2re if x ~ (2,/3 = ~t if x is on the smooth part of the 
boundary, and /3 = 0 if x is on a corner of the boundary, 
where 0 is the angle of the corner. The Green's function for 
the 2D problem is 

The formula (15) provides an explicit basis to calculate the 
values of u and w on the boundary that have not been 
specified in the formulation of the mapping problem. 

G ( x -  Xo) = - l o g  Ix-  xol : - l o g  r, 

and it is easily shown that 

0G d~ 

On dt ' 

where ~ is the angle between the vector Xo-X and the 
tangent to an appropriate cut starting from x but not 
passing through the given domain D (see Fig. 5). Thus, 
substituting for G and OG/~n in (10), we obtain an integral 
formula for u in terms of boundary values of u and Ou/On. 

/3u= -- ~ -~n log r dt + P a u--~ dt" (11) 

5. EXAMPLES OF APPLICATION 

We have applied the scheme developed in the  previous 
sections to generate grid systems for several geometries that 
are of interest in fluid mechanics. For illustration purposes, 
we have considered two specific geometries, the first consist- 
ing of two cylinders in a big square box, and the second 
corresponding to the region between two big cylinders as 
shown in Figs. 6 and 7. Due to the symmetries present in the 
problem, we have only considered one quarter of the whole 
geometry in Fig. 6 and one half in Fig. 7. 

The grid system in Fig. 6 was generated using a 41 x 11 
grid with the specified distortion functionf(~, r/)= 1 -0.84. 
The specific distortion function was chosen to avoid a very 
dense grid in the region between cylinders which would be 
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FIG. 6. Orthogonal mapping with prescribed f({, q)= 1 -0.8{. 

FIG. 7. Orthogonal mapping with prescribed boundary corre- 
spondence on two adjacent sides. 
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u 3  17alytica 1 ]A' ~=05 
Solution ~=0 

(b) 

FIG. 8. A domain with almost singular region: (a) direct application 
of BI method; (b) composition of analytical and numerical solutions. 

obtained if the conformal mapping ( f  = 1 ) were used. With 
f(~, t / )= 1 -0.84,  we have determined u(~), v(q) as 

u(~) = - ln (1  - 0.8~)/ln 5, 

v(q) = (ln 5/0.8)t/. 

(16) 

(17) 

From the boundary integral solution for the u-problem, we 
found v* = 0.246 via Eq. (4), and determined q* by the rela- 
tion v(r/*)= v*. The step sizes of the Cartesian grid in the 
(~, t/)-domain (computational domain) were then deter- 
mined as A~ = 4a6, A t /= t  1"/10. With these step sizes and 
Eqs. (16) and (17), u and v values corresponding to the 
boundary points were obtained to produce the Dirichlet- 
type boundary conditions for Eq. (1), according to the 
procedure shown below Eq. (8). 

For the 41 x 11 grid systems in Fig. 7, we have specified 
boundary correspondences at the center (t/-- 0) and the bot- 
tom (~ = 0) lines (see also Fig. 8). On each of those lines, the 
boundary points are equally spaced. Grid generation for 
this problem was carried out in a rather special way as 
shown below. As we may see, the geometry in this problem 
is quite unusual in the sense that one side (bottom side) is 
much shorter than others; i.e., the geometry includes an 
almost singular region. Therefore, if we apply our scheme to 
this problem without any treatment as shown in Fig. (8a), 
there may be considerable error in the boundary integral 
solution near the singular region due to the singular nature 
of the harmonic function near the singular point. To avoid 
the inherent numerical error, we decomposed the domain 
into two parts as shown in Fig. (8b). For the singular region 
(0~<~<0.5), we have generated an analytical grid by 
modifying the bipolar coordinate system, from which we 
also determined the position of grid points on the coor- 
dinate line corresponding to ~ =0.5. After this step, the 
remaining problem was grid generation for the regular 
region corresponding to 0.5 ~< ~ ~< 1, with specified 
boundary correspondences at adjacent boundaries, which 
was performed successfully as shown in Fig. 7. 

As we can see in Figs. 6 and 7, the orthogonality is 
excellent everywhere except for the vicinity of the non- 
orthogonal corner points. The major source of error is 
believed to come from the coarse grid distribution near that 
point, which is an intrinsic property of a single grid system 
for such a peculiar geometry. However, fortunately the 
coarse grid system near that point will not result in any 
significant error in the fluid mechanics problem because 
that region is a stagnation region for the flow. One more 
point to be stressed here is that our scheme is also very 
effective for the generation of composite grid systems. 
Geometries in some problems are so complicated that we 
may need to divide the whole domain into several sub- 
domains to generate a complete grid system by combining 
smaller grid systems for subdomains. In that case, two 
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adjacent subdomains should have common boundary 
points where the grid lines should also be continuous. As 
explained above for Fig. 7, our scheme for the case of 
specified boundary correspondence will be a powerful tool 
for those problems. 

6. SIMPLIFICATION OF INTRINSICALLY 
NONLINEAR MAPPING PROBLEMS 

So far we have limited our discussion of orthogonal grid 
generation methods to special cases in which the generating 
equations (Eqs. (la) and (lb)), plus boundary conditions, 
can be reduced via a preliminary conformal step to a linear 
system. This is because our primary interest is given to 
mappings that can be solved by a direct, noniterative solu- 
tion scheme. For more general classes of problems such as 
construction of an orthogonal grid system with specified 
boundary correspondence on all boundaries, the problem is 
intrinsically nonlinear and the scheme must be iterative. 
Indeed, several different iterative grid generation schemes 
have already been proposed for this more general class of 
problems (e.g., the weak constraint method of Ryskin and 
Leal). Unfortunately, a general proof of existence or unique- 
ness of a solution for this type of mapping problem is not 
available. Even if we take the existence of an orthogonal 
map for granted, however, it can still be very difficult in 
practice to obtain a converged solution to the mapping 
problem. One reason is that the generation of an initial 
guess can be difficult if the shape of the physical domain is 
complicated. It follows, then, that an important simplifica- 
tion may occur if the boundary-integral technique that was 
used as the initial step in the "linear" grid generation scheme 
is also applied to this more general class of mapping 
problems. The basic idea is to use the BI-based conformal 
mapping technique to transform the problem from the com- 
plicated, physical domain to a rectangular domain, so that 
the iterative orthogonal mapping step can be done in the 
simpler framework of transferring from one rectangular 
domain to another (see Fig. 9). 

Our discussion should start with the notion that 
any orthogonal mapping between a given 2D domain and 
some rectangular domain (denoted as To: (4, q)e12+~ 
(x, y ) s  12x) can be decomposed into a conformal mapping 
(denoted as To: (u,v)~12u-+(x,y)~12x) followed by an 
orthogonal mapping (denoted as To~ : (4, q) e 12+ --* 
(u, v) ~ 12,) as show in Fig. 9. More formally, the decom- 
position can be written as 

To= T~Tol. (18) 

Now, if we denote the distortion factors for the mappings 
To, T¢, and To1 asf ,  f¢, andfm, respectively, then it follows 
from the property of conformal mapping, f~ = 1, that the 

Tol 
< 

u = ug~rl) 

v = v(~rl) 

% 

x = x(u,v) 

U,V) 

x = x(~q) 
y = y(~q) 

FIG. 9. Simplification of difficult nonlinear problem (decomposition 
of an orthogonal mapping into a conformal mapping and an orthogonal 
mapping in a simple geometry). 

distortion factor for the complete map is the same as that for 
the orthogonal step in (18), i.e., 

f(~, r/) =f l (4 ,  q) V(~, ~/) E 12+. (19) 

The implication of (19) is that in order to determine the dis- 
tortion function for the overall mapping, f,  it is sufficient to 
consider the simplified mapping problem To1. Now, the 
question is how to generate the simplified problem from the 
formulation of the original problem, and this is discussed 
below. 

Here we consider the problem for which the boundary 
correspondence is fully specified at all boundary points. 
This general class of problems can be treated according to 
the following steps. 

Step 1. By the method discussed in Step 1 of Section 3, 
map the specified boundary correspondence on the physical 
domain c712 x to the corresponding boundary points on the 
rectangular domain •12u (i.e., find (u(~,r/), v(~,~))eO0 u 
corresponding to each specified point (x(~, r/), 
y(~, t/)) ~ •12x). Thus, in effect, we transfer from the original 
problem to a rectangular domain with specified boundary 
correspondence at all points. 

By Step 1 we therefore reduce the problem of mapping an 
arbitrary 2D domain to the problem of orthogonal grid 
generation from one rectangular domain to another with 
specified boundary correspondences. 

Step 2. Generate an orthogonal coordinate system in the 
rectangular domain using some iterative scheme. During 
this nonlinear process f~(~,r/) is determined. Since 
f ( ~ , t / ) = f t ( 4 ,  r/), we now have f(~,r/)  for the overall 
mapping problem. 
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Step 3. The basic problem now is to transform from the 
orthogonal grid in the transformed domain back to corre- 
sponding grid lines in the physical domain. For  this, we 
need to solve the mapping equations (Eqs. ( la )  and (lb)). 
However, since f(~,  q ) = f l ( ~ ,  q) is known, the grid gener- 
ating equation is now linear. Furthermore, we already have 
Dirichlet-type boundary conditions at the boundaries from 
the specified boundary correspondences. Therefore, the final 
step in the mapping problem is to solve two linear pde's with 
Dirichlet boundary conditions. 

Here we do not present any examples of application 
because we need to discuss the iterative solution method for 
the nonlinear problem in Step 2. However, we hope that this 
idea can be useful to other investigators. 
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